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Partitional clustering of categorical data is normally performed by using K-modes clustering algorithm,
which works well for large datasets. Even though the design and implementation of K-modes algorithm
is simple and efficient, it has the pitfall of randomly choosing the initial cluster centers for invoking every
new execution that may lead to non-repeatable clustering results. This paper addresses the randomized
center initialization problem of K-modes algorithm by proposing a cluster center initialization algorithm.
The proposed algorithm performs multiple clustering of the data based on attribute values in different
attributes and yields deterministic modes that are to be used as initial cluster centers. In the paper,
we propose a new method for selecting the most relevant attributes, namely Prominent attributes, com-
pare it with another existing method to find Significant attributes for unsupervised learning, and perform
multiple clustering of data to find initial cluster centers. The proposed algorithm ensures fixed initial
cluster centers and thus repeatable clustering results. The worst-case time complexity of the proposed
algorithm is log-linear to the number of data objects. We evaluate the proposed algorithm on several cat-
egorical datasets and compared it against random initialization and two other initialization methods, and
show that the proposed method performs better in terms of accuracy and time complexity. The initial
cluster centers computed by the proposed approach are close to the actual cluster centers of the different
data we tested, which leads to faster convergence of K-modes clustering algorithm in conjunction to bet-
ter clustering results.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cluster analysis is a form of unsupervised learning that is
aimed at finding underlying structures in the unlabeled data.
The objective of a clustering algorithm is to partition a multi-
attribute dataset into homogeneous groups (or clusters) such that
the data objects in one cluster are more similar to each other
(based on some similarity measure) than those in other clusters.
Clustering is an active research topic in pattern recognition, data
mining, statistics and machine learning with diverse application
such as in image analysis (Matas & Kittler, 1995), medical appli-
cations (Petrakis & Faloutsos, 1997) and web documentation
(Boley et al., 1999).

The partitional clustering algorithms such as K-means
(Anderberg, 1973) are very efficient for processing large numeric
datasets. Data mining applications require handling and explora-
tion of data that contains numeric, categorical or both types
attributes. The K-means clustering algorithm fails to handle data-
sets with categorical attributes because it minimizes the cost

function by calculating means and distances. The traditional
way to treat categorical attributes as numeric does not always
produce meaningful results because generally categorical do-
mains are not ordered. Several approaches have been reported
for clustering categorical datasets that are based on K-means
paradigm. Ralambondrainy (1995) presents an approach by using
K-means algorithm to cluster categorical data by converting mul-
tiple category attributes into binary attributes (using 0 and 1 to
represent either a category absent or present) and treats the bin-
ary attributes as numeric in the K-means algorithm. Gowda and
Diday (1991) use a similarity coefficient and other dissimilarity
measures to process data with categorical attributes. CLARA
(Clustering LARge Application) (Kaufman & Rousseeuw, 1990) is
a combination of a sampling procedure and the clustering pro-
gram Partitioning Around Medoids (PAM). Guha, Rastogi, and
Shim (1999) present a robust hierarchical clustering algorithm,
ROCK, that uses links to measure the similarity/proximity be-
tween a pair of data objects with categorical attributes that are
used to merge clusters. However, this algorithm has worst-case
quadratic time complexity.

Huang (1997) presents the K-modes clustering algorithm by
introducing a new dissimilarity measure to cluster categorical
data. The algorithm replaces means of clusters with modes (most
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frequent attribute value in a attribute), and uses a frequency based
method to update modes in the clustering process to minimize the
cost function. The algorithm is shown to achieve convergence with
linear time complexity with respect to the number of data objects.
Huang (1998) also points out that in general, the K-modes algo-
rithm is faster than the K-means algorithm because it needs less
iterations to converge. In principle, K-modes clustering algorithm
functions similar to K-means clustering algorithm except for the
cost function it minimizes, and hence suffers from the same draw-
backs. Similar to K-means clustering algorithm, the K-modes clus-
tering algorithm assumes that the number of clusters, K, is known
in advance. Fixed number of K clusters can make it difficult to pre-
dict the actual number of clusters in the data that may mislead the
interpretations of the results. The K-means/K-modes clustering
algorithm falls into problems when clusters are of differing sizes,
density and non-globular shapes. The K-means clustering algo-
rithm does not guarantee unique clustering due to random choice
of initial cluster centers that may yield different groupings for dif-
ferent runs (Jain & Dubes, 1988). Similarly, the K-modes algorithm
is also very sensitive to the choice of initial cluster centers and an
improper choice may result in highly undesirable cluster struc-
tures. Random initialization is widely used as a seed for K-modes
algorithm for its simplicity, however, this may lead to non-repeat-
able clustering results. Machine learning practitioners find it diffi-
cult to rely on the results thus obtained and several re-runs of K-
modes algorithm may be required to arrive at a meaningful
conclusion.

In this paper, we extend the work of Khan and Ahmad (2012)
and present a multiple clustering approach that infers cluster
structure information from multiple attributes by using the attri-
bute values present in the data for computing initial cluster cen-
ters. This approach focus only on Prominent attributes (discussed
in Section 4.2) that are important for finding cluster structures.
We also use another unsupervised learning method to find Signif-
icant attributes (Ahmad & Dey, 2007a, 2007b) and compare it
with the proposed approach. The proposed algorithm performs
multiple clustering based on distinct attribute values present in
different attributes to generate multiple clustering views of the
data that are utilized to obtain fixed initial cluster centers
(modes) for K-modes clustering algorithm. The proposed algo-
rithm has worst-case log-linear time complexity with respect to
the number of data objects. The present paper extends the previ-
ous work in terms of:

� Using a unsupervised method to compute significant attributes
and compare their clustering performance and quality of initial
cluster centers against the centers computed by prominent
attributes.
� Comparing the quality of initial cluster centers by using all attri-

butes and prominent attributes.
� Analyzing the closeness of initial cluster centers to the actual

centers by using prominent, significant and all attributes.
� Performing comprehensive experiments, presentation of

results, time scalability analysis, inclusion of more datasets,
and extended discussions on the multiple clustering challenges
from the perspective of the proposed approach.

The rest of the paper is organized as follows. In Section 2, we
present a short survey of the research work on cluster center ini-
tialization for K-modes algorithm. Section 3 briefly discusses the
K-modes clustering algorithm. In Section 4, we present the pro-
posed multiple attribute clustering approach to compute initial
cluster centers along with three different approaches to choose dif-
ferent number of attributes to generate multiple clustering views.
Section 5 shows the detailed experimental analysis of the proposed
method on various categorical datasets and compare it with other

cluster center initialization methods. Section 6 concludes the paper
with pointers to future work.

2. Related work

The K-modes algorithm (Huang, 1997) extends the K-means
paradigm to cluster categorical data and requires random selection
of initial cluster centers or modes. As discussed earlier, a random
choice of initial cluster centers leads to non-repeatable clustering
results that may be difficult to comprehend. The random initializa-
tion of cluster centers may only work well when one or more ran-
domly selected initial cluster centers are similar to the actual
cluster centers present in the data. In the most trivial case, the
K-modes algorithm keeps no control over the choice of initial clus-
ter centers and therefore repeatability of clustering results is diffi-
cult to achieve. Moreover, an inappropriate choice of initial cluster
centers can lead to undesirable clustering results. The results of
partitional clustering algorithms are better when the initial parti-
tions are close to the final solution (Jain & Dubes, 1988). Hence,
it is important to invoke K-modes clustering with fixed initial clus-
ter centers that are similar to the true representative centers of the
actual clusters to get better results.

There are several research papers reported for computing initial
cluster centers for K-modes algorithm, however, most of these
methods suffer from either of the following two drawbacks:

(a) The initial cluster center computation methods are quadratic
in time complexity with respect to the number of data
objects – these type of methods mitigate the advantage of
linear time complexity of K-modes algorithm and are not
scalable for large datasets.

(b) The initial cluster centers are not fixed and have randomness
in the computation steps – these type of methods fare as
good as random initialization methods.

We present a short review of the research work done to com-
pute initial cluster centers for K-modes clustering algorithm and
discuss their associated problems.

Khan and Ahmad (2003) use density-based multiscale data con-
densation (Mitra, Murthy, & Pal, 2002) approach with Hamming
distance to extract K initial cluster centers from the datasets, how-
ever, their method has quadratic complexity with respect to the
number of data objects. Huang (1998) proposes two approaches
for initializing the cluster centers for K-modes algorithm. In the
first method, the first K distinct data objects are chosen as initial
K-modes, whereas the second method calculates the frequencies
of all categories for all attributes and assign the most frequent cat-
egories equally to the initial K-modes. The first method may only
work if the top K data objects come from disjoint K clusters. The
second method is aimed at choosing diverse cluster center that
may improve clustering results, however a uniform criteria for
selecting K-initial cluster centers is not provided.

Sun, Zhu, and Chen (2002) present an experimental study on
applying Bradley and Fayyad’s iterative initial-point refinement
algorithm (Bradley & Fayyad, 1998) to the K-modes clustering to
improve the accuracy and repetitiveness of the clustering results.
Their experiments show that the K-modes clustering algorithm
using refined initial cluster centers leads to higher precision results
that are more reliable than the random selection method without
refinement. This method is dependent on the number of cases with
refinements and the accuracy value varies. Khan and Kant (2007)
propose a method that is based on the idea of evidence accumula-
tion for combining the results of multiple clusterings (Fred & Jain,
2002) and only focus on those data objects that are less vulnerable
to the choice of random selection of modes and to choose the most
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diverse set of modes among them. Their experiments suggest that
the computed initial cluster centers outperform the random
choice, however the method does not guarantee fixed choice of
initial cluster centers. He (2006) presents two farthest point heu-
ristic for computing initial cluster centers for K-modes algorithm.
The first heuristic is equivalent to random selection of initial clus-
ter centers and the second uses a deterministic method based on a
scoring function that sums the frequency count of attribute values
of all data objects. This heuristic does not explain how to choose a
point when several data objects have same scores, and if it ran-
domly breaks ties, then fixed centers cannot be guaranteed. The
method only considers the distance between the data points, due
to which outliers can be selected as cluster centers.

Wu, Jiang, and Huang (2007) develop a density based method to
compute the K initial cluster centers which has quadratic complex-
ity. To reduce the worst case complexity to O(n1.5), they randomly
select square root of the total points as a sub-sample of the data,
however, this step introduces randomness in the final results and
repeatability of clustering results may not be achieved. Cao, Liang,
and Bai (2009) present an initialization method that consider dis-
tance between objects and the density of the objects. Their method
selects the object with the maximum average density as the first
initial cluster center. For computing other cluster centers, the dis-
tance between the object and the already known clusters, and the
average density of the object are considered. A shortcoming of this
method is that a boundary point may be selected as the first center
that can affect the quality of selection of subsequent initial cluster
centers. Bai, Liang, Dang, and Cao (2012) propose a method to com-
pute initial cluster centers on the basis of a density function (de-
fined by using the average distance of all the other points from a
point) and a distance function. The first cluster center is decided
by the density function. The remaining cluster centers are com-
puted by using the density function and the distance between
the already calculated cluster centers and the probable new cluster
center. In order to calculate the density of a point they calculate the
summary of all the other points. Hence, there is information loss
that may lead to improper density calculation, which can affect
the results. A major problem with this research paper lies in the
evaluation of results. For at least two datasets, the accuracy, preci-
sion and recall values are computed incorrectly. From the confu-
sion matrix presented in the paper the accuracy, precision and
recall values for

� Dermatology data should be 0.6584, 0.6969, 0.6841 and not
0.7760, 0.8527, 0.7482
� Zoo data should be 0.7425, 0.7703, 0.8654 and not 0.9208,

0.8985 and 0.8143. The confusion matrix mis-classify almost
half of the data objects of first cluster and thus accuracy cannot
reach the value indicated in the paper.

In comparison to the above stated research works, the proposed
algorithm (see Section 4 for details) for finding initial clusters cen-
ters for categorical datasets circumvents both the drawbacks dis-
cussed earlier i.e. its worst-case time complexity is log-linear in
the number of data objects and it provides deterministic (fixed)
initial cluster centers.

3. K-modes algorithm for clustering categorical data

Due to the limitation of the dissimilarity measure used by tra-
ditional K-means algorithm, it cannot be used to cluster categorical
dataset. The K-modes clustering algorithm is based on K-means
paradigm, but removes the numeric data limitation whilst preserv-
ing its efficiency. The K-modes algorithm (Huang, 1998) extends

the K-means paradigm to cluster categorical data by removing
the barrier imposed by K-means through following modifications:

1. Using a simple matching dissimilarity measure or the Hamming
distance for categorical data objects.

2. Replacing means of clusters by their modes (cluster centers).

The simple matching dissimilarity measure (Hamming dis-
tance) can be defined as following. Let X and Y be two categorical
data objects described by m categorical attributes. The dissimilar-
ity measure d(X,Y) between X and Y can be defined by the total mis-
matches of the corresponding attribute categories of two objects.
Smaller the number of mismatches, more similar the two objects
are. Mathematically, we can say

dðX;YÞ ¼
Xm

j¼1

dðxj; yjÞ ð1Þ

where dðxj; yjÞ ¼
0 ðxj ¼ yjÞ
1 ðxj – yjÞ

�
, and d(X,Y) gives equal importance to

each category of an attribute.
Let N be a set of n categorical data objects described by m cat-

egorical attributes, M1,M2 , . . . ,Mm. When the distance function de-
fined in Eq. (1) is used as the dissimilarity measure for categorical
data objects, the cost function becomes

CðQÞ ¼
Xn

i¼1

dðNi;QiÞ ð2Þ

where Ni is the ith element and Qi is the nearest cluster center of Ni.
The K-modes algorithm minimizes the cost function defined in Eq.
(2).

The K-modes algorithm assumes that the knowledge of number
of natural grouping of data (i.e. K) is available and consists of the
following steps (taken from Huang (1997)):

1. Select K initial cluster centers, one for each of the cluster.
2. Allocate data objects to the cluster whose cluster center is near-

est to it according to Eq. (2). Update the K clusters based on allo-
cation of data objects and compute K new modes of all clusters.

3. Retest the dissimilarity of objects against the current modes. If
an object is found such that its nearest mode belongs to another
cluster rather than its current one, reallocate the object to that
cluster and update the modes of both clusters.

4. Repeat step 3 until no data object has changed cluster
membership.

4. Proposed approach for computing initial cluster centers
using multiple attribute clustering

Khan and Ahmad (2004) show that for partitional clustering
algorithms, such as K-Means,

� Some of the data objects are very similar to each other, that is
why they share same cluster membership irrespective of the
choice of initial cluster centers, and
� An individual attribute may also provide some information

about initial cluster centers

He, Xu, and Deng (2005) present a unified view on categorical
data clustering and cluster ensemble for the creation of new clus-
tering algorithms for categorical data. Their intuition is that the
attributes present in a categorical data contribute to the final
cluster structure. They consider the distinct attribute values of an
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attribute as cluster labels giving ‘‘best clustering’’ without consid-
ering other attributes and create a cluster ensemble.

Müller, Günnemann, Färber, and Seidl (2010) defines multiple
clusterings as setting up multiple set of clusters for every data
object in a dataset with respect to multiple views on the data.
The basic objective of multiple clustering is to represent different
perspectives on the data and utilize the variation among the
clustering results to gain additional knowledge about the structure
in the data. They discuss several challenges that arise due to multi-
ple clustering of data and merging of their results. One of the major
challenges is related to the detection of different clusterings re-
vealed by multiple views on the data. This problem of multiple
views has been studied in the original data space (Caruana, Elha-
wary, Nguyen, & Smith, 2006), orthogonal space (Davidson & Qi,
2008) and subspace projections (Agrawal, Gehrke, Gunopulos, &
Raghavan, 1998). Other challenges include given knowledge about
known clusterings, processing schemes for clustering, the number
of multiple clusterings and flexibility.

We take motivation from these research works and propose a
new cluster initialization algorithm for categorical datasets that
perform multiple clustering on different attributes (in the original
data space) and uses distinct attribute values in an attribute as
cluster labels. These multiple views provide new insights into the
hidden structures of the data that serve as a cue to find consistent
cluster structure and aid in computing better initial cluster centers.
In the following subsections, we will present three approaches to
select different attribute spaces that can help in generating differ-
ent clustering views from the data. It is to be noted that all the pro-
posed approaches assume that the desired number of clusters, K, is
known in advance.

4.1. Vanilla approach

A Vanilla approach is to consider all the attributes (m) present in
the data and generate M clustering views that can be used for fur-
ther analysis (see details for the follow up steps in Section 4.4).

4.2. Prominent attributes

Khan and Ahmad (2012) present that only few attributes may
be useful to generate multiple clustering views that can help in
computing initial cluster centers for K-modes algorithm. These rel-
evant attributes are extracted based on the following experimental
observations:

1. There may be some attributes in the dataset whose number of
attribute values are less than or equal to K. Due to fewer attri-
bute values per cluster, these attributes possess higher discrim-
inatory power and will play a significant role in deciding the
initial cluster centers as well as the cluster structures. The set
of these relevant attributes are called Prominent attributes (P).

2. For the other attributes in the dataset whose number of attri-
bute values are greater than K, the numerous attribute values
in these attributes will be spread out per cluster. These attri-
butes add little to determine proper cluster structure and con-
tribute less in deciding the initial representative modes of the
clusters.

Algorithm 1 shows the steps to compute Prominent attributes
from a dataset. The number of attributes in the set P is defined
as p = jPj. In the algorithm, p = 0 refers to a situation when there
are no prominent attributes in the data and p = m means that all
attributes are prominent attributes. In both of these scenarios, all

the attributes in the data are considered prominent or else a re-
duced set, P, of prominent attributes (equals to p) is chosen.

Algorithm 1. Computation of Prominent attributes

Input: N = data objects, M = Set of attributes in the data,
m = jMj = Number of attributes in the data, p = 0

Output: P = Set of Prominent attributes
P = /
for i = 1 ? m do

if Number of distinct attribute values in Mi > 1 && Mi 6 K
then

Add Mi to P
increment p

end if
end for
if p = 0 k p = m then

use all attribute and call computeInitialModes(Attributes M)
else

use reduced prominent attributes and call
computeInitialModes(Attributes P)

end if

4.3. Significant attributes

As discussed in the previous section, we select prominent attri-
butes as we expect that these attributes play important role in
clustering. The following section is taken from the work of Ahmad
and Dey (2007a) that discusses an approach to rank important
attributes in a dataset. We use their method to find significant
attributes from the dataset.

Ahmad and Dey (2007a, 2007b) propose an unsupervised
learning method to compute the significance of attributes. On
the basis of their significance, important attributes can be se-
lected. In this method the most important step is to find out
the distance between any two categorical values of an attri-
bute. The distance between two distinct attribute values is
computed as a function of their overall distribution and co-
occurrence with other attributes. The distance between the pair
of values x and y of attribute Mi with respect to the attribute
Mj, for a particular subset w of attribute Mj values, is defined
as follows:

/w
ij ðx; yÞ ¼ pðwjxÞ þ pð� wjyÞ � 1 ð3Þ

where p(wjx) denotes the probability that elements of the dataset
with attribute Mi equal to x have attribute Mj value such that it is
contained in w and, p(�wjy) denotes the probability that elements
of the dataset with attribute Mi equal to y have attribute Mj value
such that it is not contained in w.

The distance between attribute values x and y for Mi with re-
spect to attribute Mj is denoted by /j(x,y) and is given by

/jðx; yÞ ¼ pðWjxÞ þ pð�WjyÞ � 1 ð4Þ

where W is the subset of values of Mj that maximizes the quantity
p(wjx) + p(�wjy). The distance between x and y is computed with
respect to every other attribute. The average value of distances will
be the distance /j(x,y) between x and y in the dataset. The average
value of all the attribute values pair distances is taken as the signif-
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icance of the attribute. Algorithm 2 shows the steps to compute the
significance of attributes in the data.

Algorithm 2. Computation of significance of attributes

Input: D = Categorical Dataset, N = data objects, M = Set of
Attributes in the data, m = jMj = Number of attributes in the
data

Output: S = Set of attributes sorted in order of their
significance

for every attribute Mi do
for every pair of categorical attribute values ðx; yÞ do

Sum = 0
for every other attributes Mj do

/jðx; yÞ ¼ maxðpðwjxÞ þ py
i ðwjyÞ � 1

where w is subset of jth attribute values
Sum = Sum + /j(x,y)

end for
Distance /(x,y) between categorical values ðx; yÞ ¼ Sum

ðm�1Þ
end for
The average value of all the pair distances is taken as the
significance of the attribute.

end for

We provide an example below to illustrate Algorithm 2. Con-
sider a pure categorical dataset with three attributes M1, M2 and
M3 as shown in Table 1. We compute the significance of attribute
M1 by calculating the distance of each pair of attribute value with
respect to every other attribute. In this case there is only one pair
(L,T), therefore;

The distance between L and T with respect to M2 is:

maxðpðW jLÞþpð�WjTÞ�1Þ¼ pðCjLÞþpð�CjTÞ�1¼1þ2
3
�1¼2

3

where W is the subset of values of M2

Similarly, the distance between L and T with respect to M3 is:

maxðpðW jLÞþpð�WjTÞ�1Þ¼ pðEjLÞþpð� EjTÞ�1¼1þ1
2
�1¼1

2

The average distance between L and T is:

/ðL; TÞ ¼ 1
2

2
3
þ 1

2

� �
¼ 0:58

As there is only one pair of values in the attribute M1, the signif-
icance of attribute M1 (i.e. the average of distances of all
pairs) = 0.58.

This method to compute significance of attribute has been used
in various K-means type clustering algorithms for mixed numeric
and categorical datasets (Ahmad & Dey, 2007a, 2007b, 2011). Gen-
erally the cost function of K-means type algorithm give equal
importance to all the attributes. Ahmad and Dey (2007a, 2007b,
2011) show that with incorporating these significance of attributes
in the cost function, better clustering results can be achieved. Ji,
Pang, Zhou, Han, and Wang (2012) show that this approach is also
useful for fuzzy clustering of categorical datasets. In this paper, we
will use this approach to select the significant attributes from the
datasets.

4.4. Computation of initial cluster centers

In the preceding sections, we discussed three methods of choos-
ing attributes that can be used for computation of initial cluster
centers. The Vanilla approach chooses all the attributes whereas
the prominent attribute approach (see Section 4.2) has the ability

to choose fewer number of attributes depending upon the distribu-
tion of attribute values in different attributes in the data. We will
discuss the potential problem of choosing all the attributes in Sec-
tion 5.3. The method to compute significant attributes (see Sec-
tion 4.3) provides a ranking of all the attributes in order of their
significance in the dataset. However, there is no straight-forward
way to choose the most significant attributes in the data except
to use a arbitrary cut-off value. For the experimentation, we choose
the number of significant attributes to be the same as prominent
attributes and discard rest of them, if all the attributes in the data-
set are prominent then all of them are considered significant.

The main idea of the proposed algorithm is to partition the data
into clusters that corresponds to the number of distinct attribute
values for Vanilla/Prominent/Significant attributes, and generate a
cluster label for every data object present in the dataset. This clus-
ter labeling is essentially a clustering view of the original data in
the original space. Repeating this process for all the Vanilla/Promi-
nent/Significant attributes yield a number of cluster labels that rep-
resent multiple partition views of every data object. The cluster
labels that are assigned to a data object over these multiple clus-
terings is termed as cluster string and the number of total cluster
strings is equal to the number of data objects present in the dataset.
As noted in Section 4, some data objects will not be affected by
choosing different initial cluster centers and their cluster strings
will remain same. The distinct number of cluster strings represents
the number of distinguishable clusters in the data. The algorithm
assumes that the knowledge of the natural clusters in the data
i.e. K is available and if the number of distinct cluster strings are
more than K then it merges them into K clusters of cluster strings,
such that the cluster strings within a cluster are more similar than
others. Lastly, the cluster strings within each K clusters are re-
placed by their corresponding data objects and modes of every K
cluster is computed that serves as the initial cluster centers for
the K-modes algorithm. In summary, the proposed method finds
the dense localized regions in the dataset in the form of distin-
guishable clusters. If their count is greater than K then it merges
them to K clusters (and has the ability to ignore the infrequent
clusters) and finds their group modes to be used as initial cluster
centers. This process helps in avoiding the outliers contributing
to the computation of initial cluster centers.

Table 1
Categorical dataset.

Attributes

M1 M2 M3

L C E
L C F
T C F
T K F
T D F

Table 2
Cluster strings of different data objects.

Data point Cluster string

D1 1-1-3-2
D2 2-2-1-1
D3 1-1-3-2
D4 2-2-1-1
D5 1-2-4-2
D6 2-1-4-1
D7 2-2-2-1
D8 1-1-3-2
D9 2-2-2-1
D10 1-2-3-1
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Algorithm 3. computeInitialModes(Attributes A)

Input- Dataset N,n = jNj = the number of data objects, and A is
the set of categorical attributes with a = jAj = number of
attributes. If all the attributes are considered, then A = M
and a = m, If prominent/significant attributes are
considered, a 6m i.e. a = p. jaij is the cardinality of the ai

attribute and K is a user defined number that represent the
number of clusters in the data.

Output- K cluster centers
Generation of cluster strings
for i = 1. . .a do
1. Divide the dataset into jaij clusters on the basis of these jaij

attribute values such that data objects with different val-
ues (of this attribute ai) fall into different clusters. Com-
pute cluster centers of these jaij clusters.

2. Partition the data by performing K-modes clustering that
uses the cluster centers computed in above step as initial
cluster centers.

3. Assign cluster label to every data object. Sti defines the
cluster label of tth data object computed by using ai attri-
bute, where t = 1,2. . .n.

end for
The cluster labels assigned to a data object is considered as a

cluster string, resulting in the generation of n clustering
strings.

4. Find distinct cluster strings from n strings, count their fre-
quency, and sort them in descending order. Their count, K0,
is the number of distinguishable clusters.

5. if K0 = K Get the data objects corresponding to these K clus-
ter strings, and compute cluster centers of these K clusters.
These will be the required initial cluster centers.

6. if K0 > K Merge similar distinct cluster string of K0 strings
into K clusters (more details in Section 4.4.1) and compute
the cluster centers. These cluster centers will be the
required cluster centers.

7. if K0 < K Reduce the value of K and repeat the complete
process.

The steps to find initial cluster centers by using the proposed
approach are presented in Algorithm 3. The computational effi-
ciency of step 4 of the proposed algorithm can be improved by
using other approaches such as on-line suffix trees (Ukkonen,
1995) that can perform string comparisons in time linear in the
length of the string.

To illustrate Algorithm 3, we present a descriptive example.
Suppose we have 10 data objects D1,D2 , . . . ,D10, defined by 4 cate-
gorical attributes with K = 2. Let the cardinality of M1, M2, M3 and
M4 are 2, 2, 4, 2. For the Vanilla approach, we consider all the attri-
butes and first divide the data objects on the basis of attribute M1

and calculate 2 cluster centers because cardinality of M1 is 2. We
run K-modes algorithm by using these initial cluster centers. Every
data object is assigned a cluster label (either 1 or 2) and the same
process is repeated to all other attributes. As there are 4 attributes,
each data object will have a cluster string that consists of 4 labels.
For example data object D1 has 1-2-2-1 as the cluster string. This
means that in the first run (using M1 to create initial clusters)
the data object D1 is placed in cluster 1, in the second run (using
M2 to create initial clusters) the data object D1 is placed in cluster
2 and so on. We will get 10 different cluster strings corresponding
to every data object. Suppose we get the following clustering
strings for different data objects as shown in Table 2. We calculate
the frequency of all the distinct strings as shown in Table 3.

We take 100.5 � 3 most frequent cluster strings (details in Sec-
tion 4.4.1 on this step) and cluster them by using hierarchical clus-
tering with K = 2. The similar strings 2-2-1-1 and 2-2-2-1 are
merged in one cluster. This leads to two clusters containing the
cluster strings 1-1-3-2 and 2-2-1-1, 2-2-2-1 with their correspond-
ing data objects, i.e.

Cluster1 = {D1,D3,D8}
Cluster2 = {D2,D4,D7,D9}

The data objects belonging to these clusters are to be used to com-
pute the required 2 cluster centers as K = 2. The other infrequent
cluster strings and their corresponding data objects are assumed
to be outliers that do not contribute in computing the initial cluster
centers. The centers of these clusters serve as the initial cluster
centers for the K-Modes algorithm. For prominent features
approach, the attributes with attribute values less than or equal
to the number of clusters are selected. In the example shown, attri-
butes M1, M2 and M4 attributes are selected and the same proce-
dure is followed with these three attributes to compute the
initial cluster center. In the significant attributes approach, firstly
the significant attributes are calculated, then they are used to cal-
culate the initial cluster centers. For example if M1, M2 and M3 are
the most significant attributes, then they are used to calculate the
initial cluster centers following the above procedure.

Algorithm 3 may give rise to an obscure case where the number
of distinct cluster strings are less than the chosen K (assumed to
represent the natural clusters in the data). This case can happen
when the partitions created based on the attribute values of A attri-
butes group the data in almost the same clusters every time. An-
other possible scenario is when the attribute values of all
attributes follow almost same distribution, which is normally not
the case in real data. This case also suggests that probably the cho-
sen K does not resemble with the natural grouping and it should be
changed to a different value. The role of attributes with attribute
values greater than K has to be investigated in this case. Generally,
in K-modes clustering, the number of desired clusters (K) is se-
lected without the knowledge of natural clusters in the data. The
number of natural clusters may be less than the number of the de-
sired clusters. If the number of the cluster strings (K0) obtained is
less than K, a viable solution is to reduce the value of K and then
apply the proposed algorithm to calculate the initial cluster cen-
ters. However, this particular case is out of the scope of the present
paper.

4.4.1. Merging clusters
As discussed in step 6 of Algorithm 3, there may arise a case

when K0 > K, which means that the number of distinguishable clus-
ters obtained by the algorithm are more than the desired number
of clusters in the data. Therefore, K0 clusters must be merged to
arrive at K clusters. As these K0 clusters represent distinguishable
clusters, a trivial approach could be to sort them in order of cluster
string frequency and pick the top K cluster strings. A problem with
this method is that it cannot be ensured that the top K most fre-
quent cluster strings are representative of K clusters. If more than

Table 3
Example of frequency computation of distinct cluster strings.

String Frequency Data objects

1-1-3-2 3 D1,D3,D8

2-2-1-1 2 D2,D4

2-2-2-1 2 D7,D9

1-2-4-2 1 D5

2-1-4-1 1 D6

1-2-3-1 1 D10
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one cluster string comes from same cluster then the K-modes algo-
rithm will give undesirable clustering results. This fact is also ver-
ified experimentally and holds to be true.

Keeping this issue in mind, we propose to use the hierarchical
clustering method (Hall et al., 2009) to merge K0 distinct cluster
strings into K clusters. The hierarchical clustering generates more
informative cluster structures than the unstructured set of clusters
returned by non-hierarchical clustering methods (Jain & Dubes,
1988). Most hierarchical clustering algorithms are deterministic
and stable in comparison to their partitional counterparts. How-
ever, hierarchical clustering has the disadvantage of having qua-
dratic time complexity with respect to the number of data
objects. In general, K0 cluster strings will be less than n. However,
to avoid extreme case such as when K0 � n, we only choose the
most frequent n0.5 distinct cluster strings. This will make the hier-
archical algorithm log-linear with the number of data objects (K0 or
n0.5 distinct cluster strings here). The Hamming distance (defined
in Section 3) is used to compare the cluster strings. The proposed
algorithm is based on the observation that some data objects al-
ways belong to same clusters irrespective of the initial cluster cen-
ters. The proposed algorithm attempts to capture those data
objects that are represented by most frequent strings. The infre-
quent cluster strings can be considered as outliers or boundary
cases and their exclusion does not affect the computation of initial
cluster centers. In the best case, when K0 � n0.5, the time complex-
ity effect of log-linear hierarchical clustering will be minimal. This
process generates K M-dimensional modes that are to be used as
initial cluster centers for K-modes clustering algorithm. For merg-
ing cluster strings (in Section 5), we use ‘single-linkage’ hierarchi-
cal clustering, however other options such as average-linkage,
complete-linkage, etc. can also be used.

Continuing with the example shown in Section 4.4, we start
with n0.5 strings as the lowest level of the tree for the bottom up
approach of hierarchical clustering. Similar strings are merged up
to the level where the number of clusters is equal to the number
of desired cluster, K. The data objects belonging to strings in a clus-
ter are used to compute initial cluster center. In the example
shown in the previous section, there are three strings, 1-1-3-2, 2-
2-1-1 and 2-2-2-1, that are to be used for computing initial cluster
centers. The number of designated clusters is 2. The similar strings
2-2-1-1 and 2-2-2-1 are merged, resulting in two clusters. All the
data objects corresponding to these strings within a cluster is used
to compute the cluster centers.

4.4.2. Choice of attributes
The proposed algorithm starts with the assumption that there

exists prominent attributes in the data that can help in obtaining
distinguishable cluster structures that can either be used as is or
be merged to obtain initial cluster centers. In the absence of any
prominent attributes (or if all attributes are prominent), the Vanilla
approach, all the attributes are selected to find initial cluster cen-
ters. Since attributes other than prominent attributes contain attri-
bute values more than K, a possible repercussion is the increased
number of distinct cluster strings due to the availability of more
cluster allotment labels. This implies an overall reduction in the
individual count of distinct cluster strings and many small clusters
may be generated. In our formulation, the hierarchical clusterer
imposes a limit of n0.5 on the top cluster strings to be merged,
therefore some relevant clusters could lay outside the bound dur-
ing merging. This may lead to some loss of information while com-
puting the initial cluster centers. The best case occurs when the
number of distinct cluster strings are less than or equal to n0.5.

4.4.3. Evaluating time complexity
The proposed algorithm to compute initial cluster centers has

three parts,

1. Compute Vanilla/Prominent/Significant attributes
2. Compute initial cluster centers
3. If needed, merge clusters

The time complexity of computation of Vanilla/Prominent attri-
butes is O(nm), whereas for computing significant attributes is
O(nm2T2) (Ahmad & Dey, 2007a), where T is the average number
of distinct attribute values per attribute and T� n. Computation
of initial cluster centers (from Algorithm 3) needs the basic K-
modes algorithm to run P times (in the worst-case m times). As
the K-modes algorithm is linear with respect to the size of the
dataset (Huang, 1997), the worst-case time complexity will be
O(rKm2n), where r is the number of iterations needed for conver-
gence and r� n. For merging the distinct cluster strings into K
clusters, computeInitialModes (Attributes A) uses hierarchical clus-
tering. The worst-case complexity of the hierarchical clustering is
O(n2 logn), however the proposed approach chooses only n0.5 most
frequent distinct cluster string (see Section 4.4.1), therefore the
worst-case complexity for merging cluster strings become
O(nlogn). Combining all the parts together, we get two worst-case
time complexities:

� Using All/Prominent attributes – O(nm + rKm2n + nlogn)
� Using Significant attributes – O(nm2T2 + rKm2n + nlogn)

It is to be noted that the worst-case time complexity using signif-
icant attributes is higher than using all/prominent attributes due to
the additional computation time spent in finding out the signifi-
cance of attributes. However, the worst-case time complexity of
using both the methods is log-linear in the number of data objects.
With prominent attributes approach, the proposed method is
advantageous for the datasets when n� rKm2. For significant attri-
butes approach, the method may be useful for those datasets when
n�m2T2 + rKm2.

5. Experimental analysis

5.1. Datasets

To evaluate the performance of the proposed initialization
method, we use several pure categorical datasets from the UCI Ma-
chine Learning Repository (Batche & Lichman, 2013). A short
description for each dataset is given below.

Soybean Small. This dataset consists of 47 cases of soybean dis-
ease each characterized by 35 multi-valued categorical variables.
These cases are drawn from four populations, each one of them
representing one of the following soybean diseases: D1-Diaporthe
stem canker, D2-Charcoat rot, D3-Rhizoctonia root rot and D4-Phy-
tophthorat rot. Ideally, a clustering algorithm should partition
these given cases into four groups (clusters) corresponding to the
diseases. The clustering results on Soybean Small data are shown
in Table 5.

Breast Cancer Data. This data has 699 instances with 9 attri-
butes. Each data object is labeled as benign (458% or 65.5%) or
malignant (241% or 34.5%). There are 9 instances in attribute 6
and 9 that contain a missing (i.e. unavailable) attribute value.
The clustering results of breast cancer data are shown in Table 6.

Zoo Data. It has 101 instances described by 16 attributes and
distributed into 7 categories. The first attribute contains a unique
animal name for each instance and is removed because it is non-
informative. All other characteristics attributes are Boolean except
for the character attribute corresponds to the number of legs that
lies in the set 0, 2, 4, 5, 6, 8. The clustering results of Zoo data
are shown in Table 7.

7450 S.S. Khan, A. Ahmad / Expert Systems with Applications 40 (2013) 7444–7456



Author's personal copy

Lung Cancer Data. This dataset contains 32 instances described
by 56 attributes distributed over 3 classes with missing values in
attributes 5 and 39. The clustering results for lung cancer data
are shown in Table 8.

Mushroom Data. Mushroom dataset consists of 8124 data ob-
jects described by 22 categorical attributes distributed over 2 clas-
ses. The two classes are edible (4208 objects) and poisonous (3916
objects). It has missing values in attribute 11. The clustering results
for mushroom data are shown in Table 9.

Congressional Vote Data. This data set includes votes for each of
the U.S. House of Representatives Congressmen on the 16 key
votes. Each of the votes can either be a yes, no or an unknown dis-
position. The data has 2 classes with 267 democrats and 168
republicans instances. The clustering results for Vote data are
shown in Table 10.

Dermatology Data. This dataset contains six types of skin dis-
eases for 366 patients that are evaluated using 34 clinical attri-
butes, 33 of them are categorical and one is numerical. The
categorical attribute values signify degrees in terms of whether
the feature is present, contain largest possible amount or relative
intermediate values. In our experiment, we discretize the numeri-
cal attribute (representing the age of the patient) to contain 10 cat-
egories. The clustering results for Dermatology data are presented
in Table 11.

We used the WEKA framework (Hall et al., 2009) for the data
pre-processing and implementing the proposed algorithm.1

5.2. Comparison and performance evaluation metric

To evaluate the quality of clustering results and their fair com-
parison, we used the performance metrics used by Wu et al. (2007)
that are derived from information retrieval. Assuming that a data-
set contains K classes, for any given clustering method, let ei be the
number of data objects that are correctly assigned to class Ci, let bi

be the number of data objects that are incorrectly assigned to class
Ci, and let ci be the data objects that are incorrectly rejected
from class Ci, then precision, recall and accuracy are defined as
follows:

PR ¼
PK

i¼1
ei

eiþbi

� �
K

ð5Þ

RE ¼
PK

i¼1
ei

eiþci

� �
K

ð6Þ

AC ¼
PK

i¼1ei

N
ð7Þ

Jain and Dubes (1988) noted that the results of partitional clus-
tering algorithms improve when the initial cluster centers are close
to the actual cluster centers. To measure the closeness between
initial cluster centers computed by the proposed method and the
actual modes of the clusters in the data, we define a match metric,

matchMetric ¼ 1
K �m

XK

i¼1

Xn

j¼1

dðinitialij; actualijÞ ð8Þ

where initialij is the jth value of the initial mode for the ith cluster,
actualij is the corresponding jth value of the actual mode for the ith
cluster and d is defined same as in Section 3. The matchMetric will
give degree of closeness between initial and actual modes with a
value of 0 means no match and 1 means exact match between them.

5.3. Effect of number of attributes

In Section 4.4.2, we discussed that choosing all the attributes
can lead to the generation of large number of cluster strings, spe-
cially if the attributes have many attribute values. To test this intu-
ition, we performed a comparative analysis of the effect of the
number of selected attributes on the number of distinct cluster
strings (generated in Step 6 of Algorithm 3). In Table 4, m is the to-
tal number of attributes in the data, p is the number of prominent
attributes, s is the number of significant attributes (s = jSj and s = p),
CSM, CSP and CSS are the number of distinct cluster string obtained
using Vanilla, Prominent and Significant attributes, and n0.5 is the
limit on the number of top cluster strings to be merged using hier-
archical clustering. The table shows that choosing a Vanilla ap-
proach (all attributes) leads to larger number of cluster strings,
whereas with the proposed approach (either prominent or signifi-
cant attributes) they are relatively smaller. This fact can be seen for
the Soybean Small, Mushroom and Dermatology data. For Lung
Cancer data p �m therefore the number of cluster strings are
equivalent. For Soybean Small and Mushroom datasets, for same
number of Prominent and Significant attributes, the corresponding
number of cluster strings are different (CSP – CSS). This is due to
the fact that the set of p prominent and significant attributes is dif-
ferent because both methods select attributes by using different
approaches. While the choice of prominent attributes (when they
are less than m) should reduce the overall cluster strings as it se-
lects attributes with fewer attribute values, the attributes selected
by significance method may contain attributes with more attribute
values that results in more cluster strings. For Zoo, Vote and Breast
Cancer datasets, all the attributes were prominent therefore p and
m are same and hence CSP = CSA. It is to be noted that the number of
distinct cluster strings using proposed approach for Zoo and Mush-
room datasets are within the bounds of n0.5 limit.

5.4. Clustering results

In this section, we present the K-Modes clustering results that
use the initial cluster centers computed with the proposed method.
We conducted five set of experiments, their details are as follows:

� Experiment1: We compared the clustering results obtained by
using prominent attributes to find initial cluster centers with
the method of random selection of initial cluster centers and
the methods described by Cao et al. (2009) and Wu et al.
(2007). As mentioned in Section 2, there are some computa-
tional inaccuracies in the work of Bai et al. (2012), therefore
we exclude their method from comparison with our work. For
random initialization, we randomly group data objects into K
clusters and compute their modes to be used as initial cluster
centers.
� Experiment2: We compared the clustering results obtained by

using prominent and significant attributes to find initial cluster
centers.

Table 4
Effect of choosing different number of attributes.

Dataset Vanilla Prominent Significant n0.5

m CSA p CSP s CSS

Soybean 35 25 20 21 20 23 7
Mushroom 22 683 5 16 5 44 91
Dermatology 34 357 33 352 33 357 20
Lung-Cancer 56 32 54 32 54 32 6
Zoo 16 7 16 7 16 7 11
Vote 16 126 16 126 16 126 21
Breast-Cancer 9 355 9 355 9 355 27

1 The Java source code is publicly available at http://www.cs.uwaterloo.ca/
�s255khan/code/kmodes-init.zip.
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� Experiment3: For some datasets, the Vanilla attributes are differ-
ent from prominent attributes, for those cases we compared
their clustering results.
� Experiment4: For all the three approaches to compute initial

cluster centers i.e. Vanilla, Prominent and Significant, we com-
puted the matchMetric to measure the quality of initial cluster
centers in terms of their closeness to the actual modes or cluster
centers of the data.
� Experiment5: We performed a scalability test by increasing the

number of data objects � 100,000 and recording the time spent
in computing initial cluster centers. We also compared the
order of time complexities of the proposed method with two
other initialization methods.

Experiment1. Tables 5–11 show the clustering results, with con-
fusion matrix representing the cluster structures obtained by seed-

ing K-modes algorithm with the initial cluster centers computed
using the proposed method. It can be seen that the proposed
initialization method outperforms random cluster initialization
when used as seed for K-modes clustering algorithm for the cate-
gorical data in accuracy, precision and recall. The random initiali-
zation method gives non-repeatable results, whereas the
proposed method gives fixed clustering results. Therefore, repeat-
able and better cluster structures can be obtained by using the pro-
posed method. In comparison to the initialization methods of Cao
et al. and Wu et al., we evaluate our results in terms of:

� Accuracy – The proposed method outperforms or equals other
methods in 4 cases and perform worse in one case.
� Precision – The proposed method performs well or equals other

methods in 2 cases and performs worse in 3 cases.
� Recall – The proposed method outperforms or equals other

methods in 4 cases and performs worse in 1 case.

The results for Congressional Vote and Dermatology data are
not available from the papers from Cao et al. and Wu et al., there-
fore we compared the clustering accuracy of the proposed method
against the random initialization method. The clustering results for

Table 5
Clustering results for Soybean Small data.

Cluster Class

D1 D2 D3 D4

(a) Confusion matrix
D1 10 0 0 0
D2 0 10 0 0
D3 0 0 10 2
D4 0 0 0 15

Random Wu Cao Proposed

(b) Performance comparison
AC 0.8644 1 1 0.9574
PR 0.8999 1 1 0.9583
RE 0.8342 1 1 0.9705

Table 6
Clustering results for Breast Cancer data.

Cluster Class

Benign Malignant

(a) Confusion matrix
Benign 453 56
Malignant 5 185

Random Wu Cao Proposed

(b) Performance comparison
AC 0.8364 0.9113 0.9113 0.9127
PR 0.8699 0.9292 0.9292 0.9318
RE 0.7743 0.8773 0.8773 0.8783

Table 7
Clustering results for Zoo data.

Cluster Class

a b c d e f g

(a) Confusion matrix
a 39 0 0 0 0 0 0
b 0 19 0 0 0 0 0
c 0 1 4 0 4 0 0
d 2 0 1 13 0 0 0
e 0 0 0 0 0 0 1
f 0 0 0 0 0 8 2
g 0 0 0 0 0 0 7

Random Wu Cao Proposed

(b) Performance comparison
AC 0.8356 0.8812 0.8812 0.8911
PR 0.8072 0.8702 0.8702 0.7224
RE 0.6012 0.6714 0.6714 0.7716

Table 8
Clustering results for Lung Cancer data.

Cluster Class

a b c

(a) Confusion matrix
a 8 7 0
b 1 6 8
c 0 0 2

Random Wu Cao Proposed

(b) Performance comparison
AC 0.5210 0.5000 0.5000 0.5000
PR 0.5766 0.5584 0.5584 0.6444
RE 0.5123 0.5014 0.5014 0.5168

Table 9
Clustering results for Mushroom data.

Cluster Class

Poisonous Edible

(a) Confusion matrix
Poisonous 3052 98
Edible 864 4110

Random Wu Cao Proposed

(b) Performance comparison
AC 0.7231 0.8754 0.8754 0.8815
PR 0.7614 0.9019 0.9019 0.8975
RE 0.7174 0.8709 0.8709 0.8780

Table 10
Clustering results for Congressional Vote data.

Cluster Class

Republican Democrat

(a) Confusion matrix
Republican 158 55
Democrat 10 212

Random Proposed

(b) Performance comparison
AC 0.4972 0.8506
PR 0.5030 0.8484
RE 0.5031 0.8672
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Dermatology data with random initialization are worse due to
mixing up of data objects among various clusters.

The above results are very encouraging due to the fact that the
proposed method attempts to find dense localized regions and dis-
cards the boundary cases, thus ensuring the selection of better ini-
tial cluster centers with log-linear worst-case time complexity. The
method of Wu et al. induces random selection of data objects and
Cao et al. can select boundary cases as initial cluster centers which
can be detrimental to the clustering results. The accuracy values of
proposed method are better than or equal to other methods. The
only case where the proposed method perform worse in all three
performance metric is the Soybean Small dataset. This dataset
has only 47 data objects, our algorithm could not cluster only 2
data objects correctly. However, due to the small size of the data-
set, the clustering error appears to be large.

We observe that on some datasets the proposed method gives
worse values for precision, which implies that in those cases some
data objects from non-classes are getting clustered in given classes.
The recall values of proposed method are better than the other
methods, which suggests that the proposed approach tightly con-
trols the data objects from given classes to be not clustered to
non-classes. Breast Cancer data has no prominent attribute in the
data and uses all the attributes and produces comparable results
to other methods. Lung Cancer data, though smaller in size has
high dimension and the proposed method is able to produce better
precision and recall rates than other methods. It is also observed
that the proposed method performs well on large dataset such as
Mushroom data with more than 8000 data objects. In our experi-
ments we did not encounter a scenario where the distinct cluster
strings are less than the desired number of clusters (step 7 of Algo-
rithm 3).

Experiment2. Table 12 shows that for Zoo, Vote and Breast Can-
cer datasets, the clustering results using prominent and significant
attributes are same. This is because all the attributes are consid-
ered in these datasets for computing the initial cluster centers.

For other datasets, we observe that using prominent attributes is
a better choice than significant attributes. Although we choose
the same number of prominent and significant attributes (specially
when all the attributes are not prominent), their clustering results
varies because both of the attribute spaces may contain different
set of attributes. The reason is that by definition (see Section 4),
prominent and significant attributes use different criteria to choose
relevant attributes for computing initial cluster centers. Moreover,
generating the ranking of significant attributes is costlier in terms
of time complexity than computing prominent attributes (see
Section 4.4.3 for details).

Experiment3. As per Algorithm 1, for Zoo, Vote and Breast Cancer
data all the attributes are prominent. For the rest of the datasets,
this is not the case and the prominent attributes are less than
the total number of attributes. We performed an experiment to
analyze the scenario when there are fewer prominent attributes
and its impact on overall clustering results. Table 13 shows that
for all the datasets except Soybean Small, choosing prominent
attributes less than the total number of attributes improve the
clustering performance. Choosing all attributes in comparison to

Table 11
Clustering results for Dermatology data.

Cluster Class

Seboreic dermatitis Psoriasis Lichen planus Cronic dermatitis Pityriasis rosea Pityriasis rubra pilaris

(a) Confusion matrix
Seboreic dermatitis 53 7 5 2 36 0
Psoriasis 0 96 0 0 0 0
Lichen planus 0 0 66 0 0 0
Cronic dermatitis 2 1 0 39 0 0
Pityriasis rosea 6 8 1 11 13 4
Pityriasis rubra pilaris 0 0 0 0 0 16

Random Proposed

(b) Performance comparison
AC 0.2523 0.7732
PR 0.2697 0.7909
RE 0.2954 0.7570

Table 12
Comparison of clustering results using Prominent and Significant attributes.

Dataset Prominent Significant

AC PR RE AC PR RE

Soybean 0.9574 0.9583 0.9705 0.6809 0.7549 0.7176
Mushroom 0.8815 0.8975 0.8780 0.5086 0.7303 0.5256
Dermatology 0.7732 0.7909 0.7570 0.6502 0.5601 0.5512
Lung-Cancer 0.5000 0.6444 0.5168 0.46875 0.5079 0.4838
Zoo 0.8911 0.7224 0.7716 0.8911 0.7224 0.7716
Vote 0.8506 0.8484 0.8672 0.8506 0.8484 0.8672
Breast-Cancer 0.9127 0.9318 0.8783 0.9127 0.9318 0.8783

Table 13
Comparison of clustering results using Vanilla and Prominent attributes.

Dataset Vanilla Prominent

AC PR RE AC PR RE

Soybean 0.9787 0.9772 0.9853 0.9574 0.9583 0.9705
Mushroom 0.6745 0.7970 0.6627 0.8816 0.8976 0.87803
Dermatology 0.4180 0.3889 0.3420 0.7372 0.7909 0.7570
Lung-Cancer 0.5000 6317 0.5017 0.5 0.6444 0.5168

Table 14
Comparison of matchMetric and its effect on K-modes algorithm convergence.

Dataset Vanilla Prominent Significant

matchMetric #Itr matchMetric #Itr matchMetric #Itr

(a) p < m
Soybean 0.7357 2 0.9643 2 0.8428 2
Mushroom 0.6136 2 0.8863 2 0.5681 1
Dermatology 0.6176 5 0.6813 6 0.6274 6
Lug-Cancer 0.6726 6 0.7261 5 0.7321 8

Dataset Vanilla

matchMetric #Itr

(b) p = m
Zoo 0.8661 2
Vote 0.7500 2
Breast-Cancer 0.8333 3
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fewer prominent attributes generates more cluster strings (see
Table 4). If these cluster strings are more than n0.5, then many
relevant cluster strings may be not be chosen, which if included
could have contributed in computation of initial cluster centers.

Experiment4. For all the datasets using the three methods of
computing initial cluster centers, we computed the matchMetric
(see Eq. (8)), which measures the degree of closeness of initial
and actual modes. We also studied the impact of quality of initial
cluster centers on the convergence of the K-modes algorithm (in
terms of number of iterations, #Itr). Table 14(a) shows the case
when prominent attributes are less than total number of attributes.
The initial cluster centers selected by prominent/significant attri-
butes are always closer to the actual modes of the datasets in terms
of the matchMetric and therefore the K-modes algorithm converges
in very few iterations with good cluster structures (see discussion
of clustering results in Experiment1). Similar results were obtained
when all the attributes are chosen as prominent attributes and
used to compute initial cluster centers (see Table 14(b)). The high
values of matchMetric show that the initial cluster centers are close
to the actual cluster centers and the K-modes clustering algorithm
with these initial cluster centers converges fast with good cluster-
ing performance. The reason for the initial cluster centers to be
close to the actual cluster centers is that the proposed method
finds dense localized clusters, merges them if needed and discards
the insignificant clusters.

Experiment5. Time Scalability of the Proposed Algorithm. We per-
formed an experiment to test the scalability of the proposed meth-

od for computing initial cluster centers for large datasets. We used
the Mushroom dataset (see Section 5.1) that contains 8124 data
objects described by 22 categorical attributes and 2 clusters. We
made copies of this dataset in multiples of 2, 4, 6, 8, 10 and 12 such
that the data size varies from 8124 to 113,736. We execute the pro-
posed algorithm for computing initial cluster centers on each of
these copies separately. We ran the experiment on a HP Touch-
Smart tm2 machine with Intel Pentium™ U4100 1.3 GHz proces-
sor, L2 cache 2048 KB and 4 GB RAM. Fig. 1 shows the plot
between the different sizes of the data and the corresponding time
consumed in computing the initial cluster centers. It can be ob-
served that the time cost of the proposed method grows almost lin-
early with the increase in the number of data objects. The
experimental results suggest that the proposed cluster center ini-
tialization method scales linearly and can be implemented for large
datasets.

Table 15 compares the time complexities of the proposed clus-
ter initialization algorithms with the two competing initialization
methods of Cao et al. (2009) and Wu et al. (2007). In the proposed
algorithm (with prominent attributes), if rKm2 is larger than logn
(which is more likely to be true for high dimensional dataset with
large number of clusters), the complexity is decided by the second
term, rKm2n, which is linear in number of data objects and similar
to Cao’s method and better than Wu’s method (with respect to the
number of data objects). This linear time complexity behavior is
also observed in our scalability experiments.

Multiple Attributes Clustering Challenges In Section 4, we men-
tioned some of the challenges in employing multiple clustering ap-
proaches (as defined by Müller et al. (2010)). The proposed method
uses the multiple clustering approach to find initial cluster centers
for a partitional clustering algorithm. The proposed approach suc-
cessfully generated and detected the multiple clustering views
from the data and can process different distinguishable clusters
into relevant number of clusters by a modified hierarchical cluster-
ing approach or use them unaltered, whichever the case may be (as
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Fig. 1. Time consumption in computing initial cluster center for variable data size.

Table 15
Comparison of time complexities.

Initialization method Order of complexity

Cao et al. O(nmK2)
Wu et al. O(cn), where c can be between 2 to n0.5

Proposed method O(nm + rKm2n + nlogn), for all/prominent attributes
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discussed in Algorithm 3). In the worst-case, the proposed algo-
rithm will generate clustering views equal to the number of total
attributes in the data. This is a significant improvement over other
approaches such as by Khan and Kant (2007), which can run arbi-
trary number of times for evidence accumulation. The proposed
method is flexible and tested on various categorical datasets, how-
ever a known limitation is the advance knowledge of number of
natural clusters in the data.

6. Conclusions

K-modes clustering algorithm is employed to partition the cat-
egorical data into pre-defined K clusters, however the clustering
results intrinsically depend on the choice of random initial cluster
centers, that can cause non-repeatable results and produce impro-
per cluster structures. In this paper, we propose an algorithm to
compute the initial cluster centers for the categorical data by per-
forming multiple clustering of data based on the attribute values
present in different attributes. The present algorithm is based on
the experimental fact that similar data objects form the core of
the clusters and are not affected by the selection of initial cluster
centers, and that individual attribute also provides useful informa-
tion in generating cluster structures. The proposed algorithm is
composed of two parts – relevant attributes selection and comput-
ing initial cluster centers. For choosing the relevant attributes from
the data, we presented two competitive methods. The first method
chooses Prominent attributes on the basis of the attribute values
present in an attribute and the second method computes the rank-
ing of Significant attributes by an unsupervised learning method.
Based on the selected attributes, the proposed algorithm partitions
the data multiple times to generate multiple clustering views of
the data. The multiplicity of clustering views is captured in the
form of cluster strings, which produces distinct distinguishable
clusters in the data that may be greater than, equal to or less than
the desired number of clusters (K). If it is greater than K, then a
modified hierarchical clustering is used to merge similar cluster
strings into K clusters, if it is equal to K then the data objects cor-
responding to cluster strings can be directly used as initial cluster
centers. An obscure possibility may arise when the cluster strings
are less than K, in this case, it is assumed that the current value
of K is not the true representative of the desired number of clus-
ters. In our experiments we did not get such situation, largely be-
cause it can happen in a rare occurrence, when all the attribute
values of different attributes cluster the data in the same way.
These initial cluster centers when used as seed to K-modes cluster-
ing algorithm, improves the accuracy of the traditional K-modes
clustering algorithm that uses random cluster centers as starting
point. Since the proposed method provides a definitive choice of
initial cluster centers (zero standard deviation), consistent and
repetitive clustering results can be obtained. We also show that
the initial cluster centers computed by using prominent attributes
performs better than significant attribute selection approach and
has the advantage of lower computational complexity. The initial
cluster centers computed by the proposed approach are found to
be very similar to the actual cluster centers of the data that leads
to faster convergence of K-modes clustering algorithm and better
clustering results. The performance of the proposed method is bet-
ter than random initialization and better than or equal to the other
two methods compared on all datasets except one case. The biggest
advantage of the proposed method is the worst-case log-linear
time complexity of computation and fixed choice of initial cluster
centers from dense localized regions, whereas the other two meth-
ods lack one of them.

When the number of desired clusters is not available in ad-
vance, we would like to extend the proposed multi-clustering ap-

proach for the categorical data for finding out the natural
number of clusters present in the data, in addition to computing
the initial cluster centers for such cases. The present algorithm to
compute Prominent attributes sometimes select all the attributes
in the data, however our experiments indicate that considering
fewer most relevant attributes is a better choice than choosing
all attributes. We would like to further investigate such cases in fu-
ture. We would like to extend the Significant attributes approach by
ranking them according to their significance in the final consensus
building instead of taking a fixed number of attributes. In other
words, while computing the similarity of cluster strings in the
merging algorithm, more weights will be given to the clustering re-
sults computed by using more significant attributes.
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